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Abstract

The trust region problem, minimization of a quadratic function subject to a spherical

trust region constraint, occurs in many optimization algorithms. In a previous paper, the

authors introduced an inexpensive approximate solution technique for this problem that

involves the solution of a two-dimensional trust region problem. They showed that using this

approximation in an unconstrained optimization algorithm leads to the same theoretical global

and local convergence properties as are obtained using the exact solution to the trust region

problem. This paper reports computational results showing that the two-dimensional minimi-

zation approach gives nearly optimal reductions in the n-dimension quadratic model over a

wide range of test cases. We also show that there is very little difference, in efficiency and reli-

ability, between using the approximate or exact trust region step in solving standard test prob-

lems for unconstrained optimization. These results may encourage the application of similar

approximate trust region techniques in other contexts.
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1. Introduction.

In this paper we consider the problem

minimize (#gTd + Yd TBd d A~,(11

where geli , BeRax is symmetric, and A~ > 0. Problems of this type typically arise in trust

region algorithms for unconstrained optimization. We report theoretical and computational

results comparing approximate and exact solution techniques for (1.1). Our results show that

an inexpensive approximate solution technique of Shultz, Schnabel, and Byrd [1985] appears to

* perform almost as well as the more expensive exact method in practice. These results appear

* to have interesting ramifications for the solution of trust region problems in several contexts.

In the context of unconstrained optimization, the quadratic function being minimized in

(1.1) is an approximation to the Taylor series of the objective function at the current iterate,

where g is the gradient of the objective function at the current iterate and B is some approxi-

mation to the Hessian at the current iterate. In view of this, we will refer to a function

M(d) = g7*d + Y2dTBd as a quadratic model and speak of reducing the value of the quadratic

model. Instead of just minimizing this approximation to the Taylor series, a trust region algo-

rithm constrains the length of the step to be less than some adjustable parameter A., recogniz-

ing that the approximation is only accurate in some neighborhood of the current iterate.

Then, the solution or approximate solution to (1.1) is used as the trial step to move to the next

iterate. Thus, in a trust region algorithm, the main source of computational effort, apart from

* the function evaluations required, is the work on a problem of the form of (1.1) to determine

the step from the current iterate.

Trust region algorithms differ in their strategies for approximately solving (1.1). An early

4 trust region algorithm is the single dogleg algorithm of Powell [1970]. This algorithm takes as
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its approximate solution to (1.1) the step 9, with 1a _ A, on the piecewise linear curve

* 1 12

passing through the origin, the Cauchy point d = - 11 g, which gives the lowest value of
g TBg

the quadratic model g a + V+ TBa in the steepest descent direction, and the Newton point

d = -B- 1 g, which gives the lowest value of the quadratic model overall. Dennis and Mei

[1979 i suggest a similar strategy, but with a modified double dogleg curve that is biased toward

the Newton point. Trust region algorithms of the dogleg type have the disadvantage that they

are not intended to deal with the case that B is not positive definite. Note that they constrain

d to the two-dimensional subspace spanned by the Newton and steepest descent directions.

The exact solution to (1.1) satisfies (B-iI)s =-g (see Theorem 1). Hebden [19731 and

More [1977] suggest approximately solving (1.1) by iterating on a to obtain a > 0 such that

"(B-a1)-Ig f is approximately equal to A, and then taking the step -{B-+-[)-'g. This

approach requires a new factorization of B+cI for each new value of 0, and thus may require

*" increased algebraic effort in comparison to the dogleg algorithms.

More recently, Gay [19811, Sorensen [1982], and More and Sorensen (19831 have suggested

methods that produce steps that attain at least a fixed fraction < < I of the minimal value for

(1.1). We call such a method " r-optimal." For most problems, these r-optimal methods compute

the approximate solution to (1.1) in the same way as the Mori-Hebden methods. In the w-

called "hard case," when there is no a such that B+I is positive semi-definite and

8j(B+a) - 1 g 112! -. , a r-optimal method requires a direction of negative curvature of B to

compute its approximate solution to (1.1). These r-optimal methods have strong theoretical

properties, while the computational work required is comparable to that required for the

Morei-Hebden approach.

or. .



Shultz, Schnabel, and Byrd [19851 present an indefinite dogleg algorithm that achieves the

strong theoretical properties of a r-optimal algorithm while retaining the computational

efficiency of a dogleg algorithm. The indefinite dogleg algorithm computes an approximate

solution to (1.1) by performing a two-dimensional quadratic minimization,

minimize (gT d + VdTBd : : .A d-[uvl},

where u and v are -B- g and -g if B is positive definite and are chosen from among -g,

--4B-+1)-g, and a negative curvature direction when B is indefinite. Note that this

approach, by exact minimization in a two-dimensional subspace, will always produce a step

tnat reduces the quadratic model by at least as much as other dogleg type algorithms when B

is positive definite. The additional cost of the two-dimensional minimization over a dogleg

approach is simply the work required to exactly solve (1.1) where n = 2, and is thus negligible.

The main purpose of this paper is to report some perhaps surprising computational evi-

dence that minimization over a subspace spanned by two reasonably chosen directions tends to

produce a high percentage of the value given by minimizing exactly over all of R".

In Section 2 we briefly compare the theory of -optimal algorithms and algorithms of the

type considered by Shultz, Schnabel, and Byrd [1985'. In Section 3 we briefly describe the algo-

rithm tested. Section 4 describes our tests and and reports on their results. Finally, in Section 5

we comment on implications of these results.

2. Theoretical Comparison of Exact and Approximate Trust Region Algorithms.

This section discusses the percentage of the optimal value of (1.1) that is achieved by any

approximate method ia a class proposed by Shultz, Schnabel, and Byrd i1985i.

• ,"".4*.4.",a."*_:".".2".':..... .'', . .. ,-.. ... , .. ... '.--...-'....... -.. ..... .-



*~~~~ ~ ~~~~~~ - . p . --- . -I - R p

4

First, we give some definitions.

is the Euclidean norm onR

For a symmetric B(R xs, let XI(B)ERs be the smallest eigenvalue of B, and let

V1(B)ER* be an eigenvector of B corresponding to XI(B). For notational conveni-

ence, we will sometimes suppress the dependeace on B.

For any A R x* let A + denote the generalized inverse of A.

For any us1 , is2, ... ,9 UmER* let I U1, is2 , -I u., I denote the subspace of R* spanned

by u1, u 2 Y ... ,I U M

A function sa RsXRsX(O,zc)4R* is called a step computing function, typically

denoted by s(g,B, I).

For any gER m , symmetric BER x% and A > 0, let s.(g,B,A) be a solution to (1.1).

Such an s. is referred to as an optimal step computing function.

For .ERs, let pred(a,g,B)=-a T g - Y2 T Bs.

For 76(0,1], a step computing function a is 'r-optimal if for any gfR m , symmetric

BERs" L~and A>O0,

pred(s(g,B,A)),g,B) > r pred(s.(g,B,A),g,B)

We will now state a theorem characterizing the solution to (1.1). See, for example, Soren-

sen [19821 for a proof of ths result. This result will provide the theoretical basis for our step

computing function as well as for 7-optimal step computing functions.

Theorem 1.

Consider any symmetric BtRa , gfRa, and A1 > 0. Let s.ERG be a solution to (1.1). if B is

positive definite and flBg A, then a. =-B 1g.
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If B is positive definite and ,:B'i g, > A, then for the unique o > 0 such that

If X1 < 0 and there is an c i> -X, such that [l(B oif)-'g = A, then s. = -- B+c) - g.

Otherwise, s. + --(B-) 1 I) g - v1 , where ER is such that l-(B-XI)+g + v A.

It is clear from Theorem 1 that any method that attempts to closely approximate the

solution to (1.1) must approximate X)(B) reasonably well in the case that B is not positive

definite, and must also produce some direction of negative curvature in the final case in

Theorem 1, which Mor and Sorensen designate the "hard rlot." This case can only arise if g is

orthogonal to every eigenvector of B corresponding to the eigenvalue X.

We now discuss the conditions on a step computing function presented in Shultz, Schna-

bel, and Byrd [1985). They show that a trust region algorithm for minimization that uses a step

computing function satisfying these conditions has the same global and local convergence pro-

perties as an algorithm using an optimal or r-optimal step computing function. But, as we will

show shortly, these conditions are slightly weaker than the r-optimality condition in another

sense.

The conditions on a step computing function s(g,B,A) are given below. The first condi-

tion, originally due to Powell [1970), roughly says that the step provides at least a fixed frac-

tion of the decrease in the quadratic model that would be obtained from the best permissible

step in the steepest descent direction. The second condition roughly says that when B is

indefinite, the step provides at least a fixed fraction of the decrease in the quadratic model

that would be obtained from the best permissible step in the direction of greatest negative cur-

vature. The third condition simply says that if B is positive definite and the Newton step is

permissible, then it is chosen.

> ' .- ..,.p& . .- . .-. . . . .- . .- .. .% -. , :.: . .. -,- - . ., ... ,. . -. . . .



Conditions on a Step Computing Function.

Condition #1

There are c, c1l > 0 such that for all geRs, for all symmetric BEk~' , and for all A > 0,

pred( s(g,B,,-), g, B ) > 1 g minA,c 1 1B -

Condition #2

There is a c2 >O such that for all gR*, for all symmetric BER xs, and for all A > 0,

pred( q(g,B,A), g, B ) _ c(-X,(B))
2

Condition #3

If BR xa is positive definite and :-B-19 A, then 9(g,B,,) -B'g.

The step computing function for which we present test results in Section 4 satisfies these

three conditions. Example 1 below shows that when B is positive definite, a step satisfying

these three conditions may not be r-optimal, for any r > 0. The step computing function used

in this example is exactly the one used in our computational tests in Section 4, when B is posi-

tive definite. The second example given below shows that when B is indefinite, a step comput-

ing function satisfying Conditions #1 and #2 also may not be r-optimal, for any r > 0. The

step computing function used in this example, minimization over the subspace spanned by the

gradient and a negative curvature direction, is the simplest function that satisfies Conditions

#1 and #2 in the indefinite case.

Example 1 ( positive definite case)

.24 2 2 3 T 2 -Let f > 0, B =diag(iE ~ , = , and A = fl(B+o) g Then the solution

to (1.1) is

2 2 3 2
- -  - T - -- TI = -1 o"- g -(---) =( ),

2 2242 2 2
- -4-E E. -i-E-E" - , " - "-" - .+ (



and pred(s.,g,B) = 0(t 2). Define a step computing function by taking s(g,B,A) to be the solu-

tion to

minimize (gTd +2dBd: d , dE -g,--B g

which is the step to the minimum of the quadratic model subject to the trust region in the

two-dimensional subspace spanned by the gradient direction and the Newton direction. Since

this step will do at least as well as the best gradient step, it is easy to see that (g,B,A)

satisfies Condition #1. Condition #2 is vacuously satisfied, since X,(B) > 0. Note that

" = 0( Q(62), YBg = 0(E4), gOBg 0(), and 0B2g 1

For given g, B, and A, s(g,B,A) = pg + vB- g for some p, vcR. Then

T T -1 2 T' -1 27pred(s(g,B,A), g,B) = -pg g -vg B g - Y2 p gBg - pvg BB g -vg B- BB-1g

_ (--p-)g g -y 2g Bg - g7 B .

Now, since g B-g 0(f), it follows that for all small enough e > 0, g and B -g are
Ii II 1  I

nearly orthogonal and so ,vB- g , O(A) = 0(1), and Ipg , 0(A) 0(1). Thus,

,v, 0(), ,P: < 0(), and
2

pred(s(g,B,.),g,B) ,a -(1 + v)O(C4 ) - /p0(e 4 ) 0(J3)

< (-p - p)(E2) - pO(6) + o(e1

< (-p - p2)0(f 4) + o(E3)

Finally, since max(-p 2 ) = Y we have that

pred(s(g,B,A),g,B) _ 0((3 )

Thus,

pred(s(gB,-),g,B)

pred(s.,g,B)

-A

. -.- ' . .



Example 2 (indefinite case)

Let t > 0, B = diag(-f , l), g =(0,() , q =(1,0,0)T ,c = 2E and A 1.(B-+a)-g ,1. Then

the solution to (1.1) is

..V". ,. = -(B +aI)g = (0, - ) =(0, -

+ 2c 1 +2c 2  1 +2e 1 +2E2

S.-. and pred(s.,g,B) O(t). Now, define a step computing function by taking s(g,B,.) to be the

solution to

minimize {T d + 2dT Bd : <:d d- [ g , q

Again, this step satisfies Condition #1 since it does at least as well as the best gradient step,

and it can easily be shown to satisfy Condition #2 since q is nearly the direction of greatest

negative curvature of B. The best possible reduction for a step in the direction q is
T

= 0(E 2), since A = 0(l). Since 9 < ,it follows easily that the best reduction
g T Bg i

T 2
in the direction g is given by the Cauchy step and is V T =g) 0 Thus, since

g Bg

g g T Bq =0, it is clear that pred(s(g,B,A),g,B) = 0(62), so pred(s(gB,0),gB)
pred(s.,g,B)

In both Examples I and 2, the condition number of B approaches infinity. Theorem 2

gives a condition on the matrix B that implies the r-optimality of a step computing function

satisfying Conditions #1 and #2. This condition is, roughly, that if B is positive definite, the

condition number of B is bounded, and if B is indefinite, the amount of negative curvature is

not negligible.

Theorem 2. Suppose s is a step computing function that satisfies Conditions #1 and 42, with

IB H
constants c,, C11 c2>0. Let K > 0, and consider any g, B, and A, with < K _.

XI(B),



Then

pred(a(g,B ,A),g,B) 1 2c 2  7zri , '12KC
>_ min{2cic1 , _ 2)

pred(s.,g,B) K 2 + c

where s. is a solution to (1.1) for g, B, and A.

Proof. For notational convenience, let a = s(g,B,A), pred = pred(s,g,B), and

pred. = pred(s.,g,B). First, note that

T T T"

min g w+Y2 TBw > min g t + min Y2w Bw

- g ,A + mineO, YzX\(B)A
2

Thus,

pred. < g -. + mine0, Y-,(B))A2 } . (2.1)

Now, if X(B) > 0, then by (2.1)

pred. < 1t 11 1

and since the Newton step is the global minimum of g w + Y2w Bw in this case,

pred. < pred(-B- 1 g,g,B) = grB-lg < Y ,,- ,1 ,, ,,

1I 11 
2 

[1 11 11 I 9 1
2

It _ 11,- rd B- ',B ,I < Y < 2 _

,"B ,, X(B) B ,, 1B

Thus, by Condition #1,

c min( jjg I:,A, cz J ! L -
ci, > ;B I 2cl

pred > cmin{1, -}. (2.2)

pred. '' 12 K

"B
II il

Otherwise, X,(B) 0. Suppose first that _A > C. Then by (2.1),
I B  t

pred. < :g ,,_A + Y2 ,,B "_ 2  _ - B ,_ 2 -- ' :B "A2  B A(' ) •

Cl Cl
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Thus, by Condition #2,

pred c2 XINI(B)[ A 2  
_ _ 1 2c-c 2  1

> >

pred. 12 (2.3)(1B + I 1 72 2 + c'1 (23

-. II II

Finally, if A < u , then by Conditions #1 and #2, pred > c, g A, and

pred > c 2 X(B),1 , so by (2.1)

_____ c1 ,g 1 +c c'XB~.
pred > Z 21 I c2}. (2.4)

pred. 
A +.

11' ,, + 1/21, I(B)

- The conclusion now follows from (2.2), (2.3), and (2.4). 0

3. The Step Computing Function.

We now briefly describe the step computing function used for the tests reported in Sec-

tion 4. It is described in more detail in Shultz, Schnabel, and Byrd [1985]. They show that it

satisfies the conditions on a step computing function given in Section 2. As shown by Example

1, however, it is not a r-optimal step computing function. We will refer to this function as the

indefinite dogleg step computing function.

When B is positive definite, our step computing function chooses d to minimize the qua-

dratic model over the subspace spanned by the steepest descent and Newton directions, subject

to the trust region constraint.

In the indefinite case, our step computing function computes an &(-X 1 , -2XI], and a

V

negative curvature direction v with - f[X1 , V2J. These a and v are obtained by using the
-p.V V

0., Lanczos method (see, e.g. Parlett [1980] ) to approximate an eigenvalue of B, hopefully X, to

,:'



within a relative error of 0.1. We then set o equal to a constant (2 in the implementation

tested) multiplied by the approximation from the Lanczos method, and use the Cholesky fac-

torization to factor B+ac and determine whether it is positive definite. If the Cholesky factor-

ization fails, then the eigenvalue approximated by the Lanczos method was not X,; in this case

a better direction of negative curvature is obtained from the Cholesky decomposition and the

Lanczos method is restarted using this direction.

The step computing method always starts by attempting to do the Cholesky factorization

of B. Thus, if B is positive definite, we immediately obtain the factorization of B needed to

compute -B -g. The results in Section 4 show that an average of roughly 1.1 matrix factori-

zations per iteration are required by this method.

The Indefinite Dogleg Step Computing Function.

Let pf(0,1) be given. Given geR*, symmetric BER' "X, and A > 0, if B is not posi-

T

tive definite, compute (-X 1 , -2X,] and vER* such that t -PX

If B is positive definite then s(g,B,A) is the solution to

minimize {gT d + Yd Bd: d " -,dE[-g,-B g] (3.1)

If B is not positive definite and ,(B-,ao)-'g : > A then s(g,B,-) is the solution

to

minimize {g d + lid Bd d A, d E -g ,-(B 1 . (3.2)

If B is not positive definite and jj(B-aI)--t 'g <_ A then s(g,B,A) is

whr-sslca Ba)- , a(3.3)
where is selected so that jjs(g,B,_A) ,, AadIu B<0
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.*, The three steps (3.1), (3.2), and (3.3) above are denoted by "P", '1', and "H" for "positive

definite," "indefinite," and "hard case," respectively, in Table 1. An alternative step in the hard

case, perhaps more in keeping with the two-dimensional minimization approach, would be to

choose a(g,B,A) as the solution to

minimize {g Td + 2d Ed: T Id A, d -(B+aI) g, v]}

The step (3.3) was chosen instead because its form is closer to the step taken by the optimal

algorithm in the hard case.

When X (B) is close to 0, the indefinite dogleg step is sometimes computed by a slight

variant of the above. The augmentation ot is instead calculated by

predo
2td- (3.4)

c2A

where

predg = minimize {gT d + Y2dTBd : jd A, d-- -g]
Then s(g,B,A) is calculated by (3.2). This modification, which is needed in theory when

X1(B) = 0 and in practice when X,(B) is close to 0, is explained in detail in Shultz, Schnabel,

and Byrd [1985]. We denote a step that uses it by S, for "(nearly) semi-definite."

4. Test Results.

We now report our test results for the indefinite dogleg step computing function described

above. We tested the method both on randomly generated g, B, and A, and on g, B, and A

arising in the context of a trust region algorithm for minimization. Our approach was to com-

pare the decrease in the quadratic model of our step computing function to the optimal

decrease. The results detailed below show, perhaps surprisingly, that on the average the

n2*..



indefinite dogleg step computing function attained a high percentage of the optimal decrease.

The tests were performed in double precision arithmetic on a DEC VAX 11/780 in the Depart-

ment of Computer Science of the University of Colorado at Boulder.

We first present results on the behavior of our indefinite dogleg step computing function

on a large number of randomly generated trust region problems.

First we will describe how the trust region problems were generated. Our goal was to

generate reasonable problems, and yet to make the problems difficult enough to provide a real-

istic test of the difficult cases for the indefinite dogleg step computing function. We tested the

algorithm on a variety of test sets. Each test set consisted of 25 problems, 5 problems each of

dimensions 20, 40, 60, 80, and 100, all generated by the same scheme.

A trust region problem is defined by the symmetric matrix B, a vector g, and the trust

radius A. For each test set we first generated B and g, then chose optimal steps of one of

three forms, and finally set A to be the length of the optimal step. In this way we efficiently

generated problems with known optimal solutions. For the first through the nineteenth test

sets, the optimal step was selected by choosing an augmentation a and then taking the optimal

step to be --(B.+.aI)-g. For the twentieth test set, values of a and c were chosen, and the

optimal step was taken to be -(B+alI) -g+ v,, where v, is a normalized eigenvector for X,(B).

For the last test set, g was taken to be 0, and the optimal step was taken to be v,.

The basic scheme for generating B and g was to first choose the eigenvalues of B from a

uniform distribution in some interval, using the random number generator of Schrage [19791.

Then, as in Mori and Sorensen [19831, the diagonal matrix consisting of these eigenvalues was

pre- and post-multiplied by orthogonal matrices, and B was taken to be the resulting matrix.

Next the components of g were randomly generated in some interval, and then pre-multiplied f

I?

:, N € .-. ," ."- - "."- ."-" '..-' '-. '£ ' - -''" . . .""- 4 ".-* " -.- .- ". " ".. . -"- . . ., , -.- .- - , ' - * - ,. ,'
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by the same orthogonal matrices.

When an interval is given in the second and third columns in Table 1, it is the interval in

which the eigenvalues of B and the unmodified components of g are uniformly distributed.

When an interval is listed in the fourth column in Table 1, it is the interval in which the values

of the optimal augmentation a are uniformly distributed.

For the test sets 1 through 6 given in Table 1, no further modifications to B or g were

made. The optimal step s. was simply taken to be -(B+oI)-Ig, with Ax - "(B+al)-tg

The test sets 7 through 16 were generated in the same way as the first six test sets, but

in addition changes were made to either B or g, in an attempt to make the problems more

difficult. In order to generate problems with a more difficult eigenvalue distribution, the smal-

lest eigenvalue from a uniform distribution over (0,2) was sometimes set to 0, and sometimes

switched to the opposite sign. These modifications are designated in Table 1 by a "Z" (for

"zero") or an "0" (for "opposite"), respectively, following the interval for the eigenvalue range.

In order to generate problems for which the best gradient step tends to do poorly, sometimes

the components of g corresponding to positive eigenvalues were chosen to be uniformly distri-

buted in the interval (-1,1), while the components corresponding to negative eigenvalues were

chosen to be uniformly distributed in the interval (-0.1,0.1). The intent of this was to make g

likely to be a direction with large positive curvature, and hence make the best gradient step

tend to give a small reduction of the quadratic model. These problems are designated by a "B"

(for "biased") following the interval listed in the gradient component range column.

For the test sets 17 through 19, the eigenvalues were chosen to be normally distributed

with mean 0. This was done in order to produce test problems with a non-uniform eigenvalue

distribution and to make it more likely that X,(B) is relatively isolated from any other nega-

W.*



tive eigenvalues of B. The optimal step was taken to be of the form -(B+aI)-g, as for the

first 16 test sets. These problems are designated by an "N" (for "normal") appearing in the

eigenvalue range column. In order to make these problems more difficult, the gradient com-

ponents were chosen in the biased way described above, as designated by a "B" appearing in

the gradient component range column.

For the test set 20, the component of the gradient corresponding to the smallest eigen-

value of B was set to 0. Then a random value for c was chosen uniformly in the interval (0,1),

and the optimal step was taken as s. = -(B+a!)~ g + v1 . Since -1 was chosen as the length

of s. and the eigenvalue range was such that XI(B)<O always occurred, this test set consists of

problems of the type called the "hard case" by Mori and Sorensen '19831. Thus they are desig-

nated by an "H" (for "hard case") appearing in the gradient component range column.

Test set 21 consisted of saddle-point p, )blems. The gradient was set to 0 and the

optimal solution chosen to be the eigenvector of length I corresponding to the smallest eigen-

value. These problems are designated in Table I by an "S" (for "saddle-point") appearing in

the gradient component range column.

Now we describe the remaining columns of Table 1. For each test set, the fifth column

* lists the type of steps taken by the indefinite dogleg step computing function, followed by the

number of problems out of the 25 in that set that each step type was taken.

For each test set, the sixth and seventh columns report the average and minimum ratio$

of the decrease in the quadratic model obtained by the indefinite dogleg step divided by the
4.

decrease obtained by the optimal step. The eighth column reports the average ratio of the

decrease obtained by the best gradient step to the optimal decrease. This is included in order

to show that the gradient direction alone does not do particularly well on these test problems.

...... ,'...'...-... o.......,~~~~~~~~~~~~~.... ... , ,... -... .. . ,.'. .,-..,.,... . .. -..... ,*..-, ,.. ., -. , . . ,. , , ,, ,.. .
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Table 1

Fraction of Optimal Reduction Obtained by
the Indefinite Dogleg Step Computing Function
on Randomly Generated Trust Region Problems

Test Eig. Grad. Aug. Step Ave. Mn. Best
Set Range Range Range Type Redn. Redn. Grad.
Num. Ave.

1 (0,2) (-1,1) (0,01) P:25 .96 .60 .37
2 (-.1,1) (-1,1) (0,.1) H:6,1:19 .97 .79 .36
3 (-.1,1) (-1,1) (0,1) H:1,1:24 .98 .95 .85
4 (-.01,1) (-1,1) (0,.01) S:2,P:12, .96 .72 .28

H:2,h9
5 (-.01,1) (-1,1) (0,1) S:6,P:12, .91 .72 .48

1:7
6 .(-.01,1) (-1,) (0,1) S:6,P:12, .97 .86 .87

1:7

7 (-1,1) B (0,.01) H:25 .97 .87 .26
8 (-.1,1) B (0,.01) H:24,1:1 .99 .90 .42
9 (-1,1) B (0,.1) 11:25 .99 .96 .81

10 (0,2)0 (-1,1) (0,.01) S:3,H:14,1:8 .97 .84 .12
11 (0,2)0 B (0,.01) S:4,H:13,1:8 .97 .79 .37
12 (0,2)0 B (0,.1) S:4,H:1,1:20 .95 .68 .53
13 (0,2)0 B (0,1) S:4,1:21 .96 .76 .83
14 (0,2)Z B (0,.01) S:25 .96 .83 .17
15 (0,2)Z B (0,.A) S:25 .98 .87 .37
16 (0,2)Z B (0,1) S:25 .99 .96 .78

17 N B (0,.01) H:25 .98 .83 .08
18 N B (0,.1) H:25 .99 .84 .63
19 N B (0,1) H:15,1:10 .99 .99 .94

20 (-1,1) (-1,1)H (0,01) H:25 .97 .91 .34

21 (-1,1) S H:25 .97 .84 0
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Notes

1) In eigenvalue range column, "0" means smallest eigenvalue is
switched to the opposite sign; "" means smallest eigenvalue is
set to 0; "N" means eigenvalues are normally distributed.
2) In gradient component range column, "B" means that the gradient
components are taken in (-0.1,0.1) if corresponding eigenvalue
is negative, taken in (-1,1) otherwise; "H" means that gradient
component corresponding to most negative eigenvalue is set to 0;
"S" means that g=0.
3) In step type column,
"P" means that step was of the form (3.1),
"I" means that step was of the form (3.2),
"H" means that step was of the form (3.3),
"S" means that step was of the form (3.2) with a given by (3.4).

We observe from Table I that the indefinite dogleg step computing function obtains a

very high fraction of the optimal reduction in the quadratic model. In fact, in all the test sets

in Table 1, the lowest average fraction of the optimal obtained is 0.91 in test set 5, and all of

the other average fractions are bigger than 0.95. Note also that the Newton step is never the

optimal step in these tests, so it is not the case that the fraction is high simply because New-

ton steps are weighting it toward 1. Indeed, the smallest fraction of the optimal decrease

obtained by any indefinite dogleg step in any of these tests is 0.6 in test set 1. These results

indicate that the indefinite dogleg step computing function does quite well on solving (1.1),

including problems where B is fairly large and non-sparse, even though it only computes the

step in a two-dimensional subspace and is not --optimal in theory.

We now present test results for a trust region algorithm for unconstrained minimization

that uses the indefinite dogleg step computing function to generate its iterates. The code that

was tested was a modified version of the code described in Schnabel, Koontz, and Weiss [1985'.

The exact gradient and Hessian functions were used.

i%
,, , ' . . . . .4 . .. - . ' . . , . . -. - . ,. . .. . . " .. . . • _. . . ..



This algorithm was run on a number of minimization problems in a standard test set in

Morei Garbow, and Hillstrom (19811. Table 4 lists the test function numbers and names. The

basic set obtained from these 18 problems consists of three tests for each function, given by

starting the iteration at the standard starting point x., at l0z0, and at 100z0 . Test problems

* 4, 5, and 10 are badly scaled and were omitted from our tests because our implementation

* made no attempt to deal with bad scaling. On some of the remaining test fuinctions, some of

the larger starting paints led to overflows at the first iterate or first step, and therefore had to

be discarded.

Table 2 contains the results for the tests on this standard test set. The first two columns

contain the test function numbers and the number of variables. The third column contains the

* power of 10 by which the standard starting point is multiplied. The fourth and fifth columns

contain the number of iterations and function evaluations, respectively, "hat were required by

the minimization algorithm using the optimal step computing function. The sixth and seventh

columns contain the number of iterations and function evaluations for the same minimization

algorithm using the indefinite dogleg step computing function. The eighth and ninth columns

* contain the average and minimum ratios, respectively, of the reduction in the quadratic model

obtained by the indefinite dogleg step compared to the reduction obtained by the optimal step

computing function. These numbers were obtained as follows. For each step taken by the

indefinite dogleg algorithm, the optimal step was computed for the same quadratic trust region

problem, and the ratio of the reduction in the quadratic model by the indefinite dogleg step to

the reduction by the optimal step was computed. Then the average and minimum of these

ratios was calculated over all the iterations. Finally, the tenth column contains the total

number of Cholesky factorizations attempted by the indefinite dogleg minimization algorithm.
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Table 2

Performance of the Indefinite Dogleg Step Computing Function
in a Trust Region Algorithm For Unconstrained Minimization

.4 on Standard Teat Functions with Standard Starting Points

."Fcn. Dim. x(0) Opt. Opt. Dog. Dog. Ave. Min. Nurn.

Num. Itn. Fcn. Itn. Fcn. Redn. Redn. Chol.

1 3 0 13 14 10 12 .98 .91 12
1 14 17 15 19 .99 .98 16
2 14 18 16 20 .99 .98 16

2 6 0 30 41 47 63 .95 .53 51
3 3 0 2 3 2 3 .99 .99 2
6 10 0 14 15 14 15 1. 1. 14

1 17 18 17 18 .99 .99 17
2 23 24 23 24 .99 .99 23

7 9 0 12 13 14 15 .85 .39 14
1 49 63 42 52 .85 .14 45
2 52 64 47 57 .92 .35 47

7 12 0 13 14 21 22 .59 .14 21
8 10 0 31 43 31 43 .99 .99 31

1 36 48 36 48 .99 .99 36
2 43 57 43 57 .99 .96 43

9 4 0 76 102 75 100 .99 .96 75
1 85 115 85 115 .99 .96 85
2 77 102 83 112 .99 .91 83

9 10 0 88 115 92 123 .97 .88 92
1 93 122 97 129 .97 .87 97
2 100 131 105 139 .97 .86 105

11 4 0 8 9 8 9 .99 .99 8
1 14 15 14 15 .99 .99 14
2 20 21 20 21 .99 .99 20

12 3 0 20 23 25 29 .93 .46 25
* 13 10 0 9 10 9 12 .99 .98 9

1 17 23 17 22 .98 .79 18
2 14 15 14 15 .99 .99 14

I.

4J/
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14 2 0 20 23 22 27 .99 .99 22

1 44 56 43 55 .99 .99 43
2 110 146 110 146 .99 .99 110

15 4 0 15 16 15 16 .99 .94 15

1 20 21 20 21 .99 .98 20
%2 26 27 26 27 .99 .99 26

16 2 0 9 11 9 11 .99 .99 11
1 55 75 57 74 .99 .80 60

17 4 0 41 51 40 51 .99 .95 42
1 43 55 45 59 .99 .97 47
2 50 67 53 67 .99 95 55

18 7 0 7 9 7 9 .98 .90 9
18 8 0 10 15 12 16 .97 .91 15
18 9 0 9 12 9 12 .97 .81 14
18 10 0 10 14 10 14 .98 .95 13

The results in columns 8 and 9 of Table 2 show that the indefinite dogleg step computing

function does a good job of approximately solving (1.1). Note that the very high average irac-

tions in column 8 are considerably influenced by the presence of a large number of iterates at

which the Newton step was taken. Nonetheless, the minimum values in column 9 show that

the dogleg step does surprisingly well, even in the worst cases. The lowest fraction of the

optimal value obtained for any step of any of the trust region problems encountered is .14, and

the minimum is greater than .80 in 37 of the 43 test problems.

It is also interesting to observe that the indefinite dogleg step minimization algorithm

performs only slightly worse than the optimal step minimization algorithm in terms of iter-

tions and function evaluations. Further, the average number of Cholesky factorizations per-

formed by the algorithm on all the Hessian matrices in this test set is only 1.05, and the aver-

age number of Cholesky factorizations on indefinite Hessian matrices is just 1.14.

Since we were especially interested in how the indefinite dogleg step computing function

would perform in the presence of indefinite Hessians, we formed a second test set by using
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several different starting points for each of the problems 2, 12, and 18. These problems were

chosen because they seemed to be fairly difficult, and yielded a considerable number of

indefinite Hessian matrices when used in the tests for Table 2. The starting points for the tests

reported in Table 3 were chosen to be scattered around the standard starting point. Table 3

follows the same format as Table 2, except that the column for the starting point has been

removed.

In Table 3 we still observe that the indefinite dogleg step usually obtains a quite high

fraction of the optimal reduction. There are some low minimum reductions, but the average

reductions are still very high. The overall performances of the indefinite dogleg and optimal

minimization algorithms in terms of iterations and function evaluations are similar.

Our results also indicate that there is very little difference in efficiency or reliability

between using the the optimal step and using the indefinite dogleg step in an unconstrained

minimization algorithm.

5. Conclusions.

Our computational results indicate that even though the indefinite dogleg step computing

function is not r-optimal, it usually obtains a quite high fraction of the optimal reduction in

the quadratic model in practice.

These results may not have great significance in situations in which the algebraic work of

factoring (B+ol) or calculating the eigenvalues of B is negligible. For problems with a small

number of variables, or with a very expensive objective function, the best course of action

might be to simply use an optimal step computing function. Not only does an optimal step

_.5
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Table 3

. Performance of the Indefinite Dogleg Step Computing Function

*: in a Trust Region Algorithm for Unconstrained Minimization

on Standard Test Functions with Standard Starting Points

Fcn. Dim. Opt. Opt. Dog. Dog. Ave. Min. Num.

Num. ltn. Fen. Itn. Fcn. Redn. Redn. Chol.

2 6

56 82 52 70 .94 .38 58

52 66 90 119 .91 .23 97

33 45 38 55 .79 .17 44
94 125 95 125 .97 .48 t00

73 102 62 86 .98 .75 64

97 130 43 61 .78 .03 48

151 190 145 186 .96 .15 157
32 42 46 63 .82 .02 53

48 69 36 50 .94 .47 38
115 147 120 156 .92 .03 127
28 37 41 57 .84 .15 47

12 3

22 26 23 27 .98 .87 23

21 26 23 28 .95 .55 23
19 24 26 31 .94 .42 26

18 7

14 18 15 19 .98 .81 18

19 26 22 29 .92 .53 24

20 29 20 27 .98 .87 23

23 30 22 31 .97 .86 26

a.

de
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Table 4

i List of Standard Test Function Numbers and Names

'5

i

Test Function Number Test Function Name

1 Helical Valley Function
2 Biggs Exp6 Function
3 Gaussian Function
4 Powell Badly Scaled Function
5 Box 3-Dimensional Function
6 Variably Dimensioned Function
7 Watson Function

8 Penalty Function I
9 Penalty Function II
10 Brown Badly Scaled Function
11 Brown and Dennis Function
12 Gulf Research and Development Function

13 Trigonometric Function
14 Extended Rosenbrock Function
15 Extended Powell Singular Function
16 Beale Function

17 Wood Function
18 Chebyquad Function

computing function provide the best possible solution to (1.1), but, given the code to compute

the eigenvalue information for B, the optimal step computing function may well be easier to

implement than other step computing functions.

In other s:tuations, however, the observations in this paper are of interest and may sug-

gest new algorithms. For problems where n is large, the two-dimensional minimization idea

may be useful. Also, there appear to be various situations where a trust region approach

seems attractive but the calculation of the optimal step is impractical. Examples include the

A :.:.:%'L1_%
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constrained optimization algorithm of Celis, Dennis, and Tapia [19851, and the tensor methods

for nonlinear equations and optimization of Schnabel and Frank [1984,19881. In these cases

there is a natural two-dimensional subspace but no obvious dogleg path, so two-dimensional

minimization is the apparent choice. The results of this paper seem to encourage the use of

*such strategies.

. -•++ ." + + ,- " ti U * - ? .
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